Overview

Our work focuses on the design and application of novel pulsed techniques, using controlled radiation fields to alter dynamics. The heart of the work is chemical physics, and most of what we do is ultrafast laser spectroscopy or nuclear magnetic resonance, but the focus is on solving problems of societal importance.  For example, we develop technologies to tailor laser pulses and pulse trains and use them to look at skin moles to see if they are cancerous (or how likely they are to become metastatic), or to do three-dimensional images of Renaissance paintings to infer artist’s intent.  We also extend fundamental quantum mechanics and NMR pulse sequence design to create nuclear spin states, protected from their environment, that enable biomolecular magnetic resonance imaging for early stage cancer diagnosis, drug development, and the study of metabolic pathways.  In addition, we pioneer new methods to detect macroscopic coherences in bulk matter, between spins separated by hundreds of microns, and use these coherences to image temperature in hyperthermic cancer therapy or improve obesity diagnosis without ionizing radiation. All of these highly interdisciplinary projects involve an intimate mixture of theory and experiment, and they often include a broad range of collaborators with complementary expertise.

 

Interested in research at the forefront of molecular and biomolecular imaging? Does mixing of quantum mechanics with cancer imaging or metabolic profiling sound exciting?

Just get in touch with us!

email Prof. Warren directly: warren.warren@duke.edu or email martin.fischer@duke.edu if interested in laser imaging